

Testing the range and accuracy of Ultra Wideband (UWB) devices for UAV localization applications.

Jacob Feldgoise & Tian Xiangrui

Introduction

- A key problem in the field of unmanned aerial vehicle (UAV) navigation is simultaneous localization and mapping (SLAM). Ultra Wideband (UWB) localization systems present a partial solution because they are highly effective in featureless dynamic environments.
- This study sought to understand the accuracy, range, and localization capabilities of two UWB products: the commercial Posyx system and a custom-built Arduino Pro Mini connected to a DecaWave1000 UWB transceiver.

DW1000 Arduino

Pozyx

Testing the Arduinos

Challenges while configuring the DW1000 Arduinos

- Code must be uploaded to each Arduino Pro Mini via an Arduino Uno.
- Code cannot be uploaded to the device unless its reset pin is connected to the reset pin of the Arduino Uno.
- An error in the DW1000 Arduino library prevented the devices from initializing the UWB module.

Testing the Arduino to determine optimal settings

- We used ranging between 1 tag and 1 anchor to optimize settings.
- The DW1000 module should be oriented vertically upward, not towards the other anchors/tags.
- The DW1000 module should use a 128 character preamble length, 6.8 Mbps data rate, and 16 MHz pulse frequency.

Localization Field Tests

 The Arduino and Posyx have similar maximum ranges of about 20 meters, but the Posyx has a commerciallybuilt UI and faster refresh rate, so Tian used the Posyx to conduct localization field tests.

Bridge inspecton field test

 Tian flew a UAV with an attached tag up from the ground, two times back and forth underneath the bridge, and then landed it.

Soccer net field test

• Tian flew a UAV with an attached tag above a soccer net.

Fuse UWB technology with inertial navigation systems (INS) and LIDAR

